
UDT as an Alternative
Transport Protocol for

GridFTP

Raj Kettimuthu

kettimut@mcs.anl.gov

Argonne National Laboratory

The University of Chicago

Outline

  GridFTP
  GridFTP Architecture
  Globus XIO
  UDT
  GridFTP/UDT integration
  Experimental results

GridFTP

  A secure, robust, fast, efficient, standards based,
widely accepted data transfer protocol

  We also supply a reference implementation:
  Server
  Client tools (globus-url-copy)
  Development Libraries

  Multiple independent implementations can
interoperate
  University of Virginia and Fermi Lab have home

grown servers that work with ours.

  Lots of people have developed clients independent
of the Globus Project.

GridFTP

  Two channel protocol like FTP

  Control Channel
  Communication link (TCP) over which

commands and responses flow

  Low bandwidth; encrypted and integrity
protected by default

  Data Channel
  Communication link(s) over which the

actual data of interest flows

  High Bandwidth; authenticated by default;
encryption and integrity protection optional

Striping

  GridFTP offers a powerful feature called striped
transfers (cluster-to-cluster transfers)

GridFTP Architecture

6

Server PI

DTP DTP DTP

Server PI

DTP DTP DTP Data Channels

Client PI

Internal IPC API

Stripes/Backends Stripes/Backends

Internal IPC API

Control Channels

DSI

GridFTP Architecture

7

GridFTP Data Transfer Pipeline

Globus XIO

8

9

Grid Communication

  Geographically Distributed Resources

  Varying Networks Characteristics
  LAN, WAN, LFN, Dedicated, Shared, QOS

  Varying Network Protocols
  HTTP, UDT, TCP, RBUDP, etc.

  Researching making newer and faster

  Varying Conditions
  Congested/Idle

10

Varying Environments

Application Application RBUDP
Dedicated

LFN

Infiniband

UDT

TCP

Shared

Globus XIO

11

  Framework to
compose different
protocols

  Provides a unified
interface open/close/
read/write

  Driver interface to
hook 3rd party
protocol libraries

12

Varying Networks

Application Dedicated

LFN

Shared

G
lo

bu
s

X
IO

UDT

Infiniband

TCP
 Driver

13

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

TCP

net

SSL

ZIP

14

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

TCP

net

SSL

15

Stack

  An arrangement of drivers

  Transport
  Exactly one per stack

  Must be on the bottom

  Transform
  Zero or many per stack

Example
Driver
Stack

UDT

net

SSL

UDT

16

UDT

  UDT: UDP based Data Transfer
  Application level transport protocol, over UDP with

reliability, congestion, and flow control
  Implementation: Open source C++ library

  Rate based congestion control (Rate Control)
  RC tunes the packet sending period.
  RC is triggered periodically.

  Window based flow control (Flow Control)
  FC limits the number of unacknowledged

packets.
  FC is triggered on each received ACK.

17

UDT

  AIMD: Increase parameter is related to link
capacity and current sending rate; Decrease
factor is 1/9, but not decrease for all loss
events.

  Link capacity is probed by packet pair, which
is sampled UDT data packets.
  Every 16th data packet and it successor packet are

sent back to back to form a packet pair.

  The receiver uses a median filter on the interval
between the arrival times of each packet pair to
estimate link capacity.

18

… …

UDT

19

GridFTP/UDT Integration

20

21

Wrapblock Driver Development

  Easy way to write XIO Drivers
  Create from third party libraries.

  Blocking API
  Thread pooling/event callbacks to morph

async to sync

  Recommend threaded builds

  UDT driver developed using the wrapblock
feature

22

Interface functions

  A set of function signatures
  open/close/read/write implemented by

driver

  cntl() functions for driver specific hooks

  Wrapped into a structure and registered
with Globus XIO

  Calls to these functions are made expecting
specific behaviours
  Ex: the read() interface function should produce some data,

and the write() interface function should consume data, etc

23

Example Interface Functions

static
globus_result_t
globus_l_xio_udt_ref_read(
 void * driver_specific_handle,
 const globus_xio_iovec_t * iovec,
 int iovec_count,
 globus_size_t * nbytes)
{
 globus_result_t result;
 xio_l_udt_ref_handle_t * handle;

 handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

 *nbytes = (globus_size_t) UDT::recv(
 handle->sock, (char *)iovec[0].iov_base,
 iovec[0].iov_len, 0);
 /* need to figure out eof */
 if(*nbytes <= 0)
 {
 result = GlobusXIOUdtError("UDT::recv failed");
 goto error;
 }

 return GLOBUS_SUCCESS;
error:
 return result;
}

static
globus_result_t
globus_l_xio_udt_ref_write(
 void * driver_specific_handle,
 const globus_xio_iovec_t * iovec,
 int iovec_count,
 globus_size_t * nbytes)
{
 globus_result_t result;
 xio_l_udt_ref_handle_t * handle;

 handle = (xio_l_udt_ref_handle_t *) driver_specific_handle;

 *nbytes = (globus_size_t) UDT::send(
 handle->sock, (char*)iovec[0].iov_base,
 iovec[0].iov_len, 0);
 if(*nbytes < 0)
 {
 result = GlobusXIOUdtError("UDT::send failed");
 goto error;
 }

 return GLOBUS_SUCCESS;
error:
 return result;
}

Throughput achieved using
various transport mechanisms

Impact of concurrent flows
Japan-ORNL testbed BMI-Japan testbed

26

Resource Utilization of
UDT vs TCP

  The performance of TCP and UDT
comparable on TeraGrid network
between ANL and ORNL
  Both TCP and UDT achieved a throughput

around 700 Mbit/s on this testbed.

  The CPU utilization for TCP transfers was
in the range of 30–50%, whereas for
UDT transfers it was around 80%

  The memory consumption was around
0.2% for TCP and 1% for UDT

27

Questions

